
UDT as an Alternative
Transport Protocol for

GridFTP

Raj Kettimuthu

kettimut@mcs.anl.gov

Argonne National Laboratory

The University of Chicago

Outline

  GridFTP
  GridFTP Architecture
  Globus XIO
  UDT
  GridFTP/UDT integration
  Experimental results

GridFTP

  A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

  We also supply a reference implementation:
  Server
  Client tools (globus-url-copy)
  Development Libraries

  Multiple independent implementations can
interoperate
  University of Virginia and Fermi Lab have home

grown servers that work with ours.

  Lots of people have developed clients independent
of the Globus Project.

GridFTP

  Two channel protocol like FTP

  Control Channel
  Communication link (TCP) over which

commands and responses flow

  Low bandwidth; encrypted and integrity
protected by default

  Data Channel
  Communication link(s) over which the

actual data of interest flows

  High Bandwidth; authenticated by default;
encryption and integrity protection optional

Striping

  GridFTP offers a powerful feature called striped
transfers (cluster-to-cluster transfers)

GridFTP Architecture

6

Server PI

DTP DTP DTP

Server PI

DTP DTP DTP Data Channels

Client PI

Internal IPC API

Stripes/Backends Stripes/Backends

Internal IPC API

Control Channels

DSI

GridFTP Architecture

7

GridFTP Data Transfer Pipeline

Globus XIO

8

9

Grid Communication

  Geographically Distributed Resources

  Varying Networks Characteristics
  LAN, WAN, LFN, Dedicated, Shared, QOS

  Varying Network Protocols
  HTTP, UDT, TCP, RBUDP, etc.

  Researching making newer and faster

  Varying Conditions
  Congested/Idle

10

Varying Environments

Application Application RBUDP
Dedicated

LFN

Infiniband

UDT

TCP

Shared

Globus XIO

11

  Framework to
compose different
protocols

  Provides a unified
interface open/close/
read/write

  Driver interface to
hook 3rd party
protocol libraries

12

Varying Networks

Application Dedicated

LFN

Shared

G
lo

bu
s

X
IO

UDT

Infiniband

TCP
 Driver

13

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

TCP

net

SSL

ZIP

14

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

TCP

net

SSL

15

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

UDT

net

SSL

UDT

16

UDT

  UDT: UDP based Data Transfer
  Application level transport protocol, over UDP with

reliability, congestion, and flow control
  Implementation: Open source C++ library

  Rate based congestion control (Rate Control)
  RC tunes the packet sending period.
  RC is triggered periodically.

  Window based flow control (Flow Control)
  FC limits the number of unacknowledged

packets.
  FC is triggered on each received ACK.

17

UDT

  AIMD: Increase parameter is related to link
capacity and current sending rate; Decrease
factor is 1/9, but not decrease for all loss
events.

  Link capacity is probed by packet pair, which
is sampled UDT data packets.
  Every 16th data packet and it successor packet are

sent back to back to form a packet pair.

  The receiver uses a median filter on the interval
between the arrival times of each packet pair to
estimate link capacity.

18

… …

UDT

19

GridFTP/UDT Integration

20

21

Wrapblock Driver Development

  Easy way to write XIO Drivers
  Create from third party libraries.

  Blocking API
  Thread pooling/event callbacks to morph

async to sync

  Recommend threaded builds

  UDT driver developed using the wrapblock
feature

22

Interface functions

  A set of function signatures
  open/close/read/write implemented by

driver

  cntl() functions for driver specific hooks

  Wrapped into a structure and registered
with Globus XIO

  Calls to these functions are made expecting
specific behaviours
  Ex: the read() interface function should produce some data,

and the write() interface function should consume data, etc

23

Example Interface Functions

static
globus_result_t
globus_l_xio_udt_ref_read(
 void * driver_specific_handle,
 const globus_xio_iovec_t * iovec,
 int iovec_count,
 globus_size_t * nbytes)
{
 globus_result_t result;
 xio_l_udt_ref_handle_t * handle;

 handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

 *nbytes = (globus_size_t) UDT::recv(
 handle->sock, (char *)iovec[0].iov_base,
 iovec[0].iov_len, 0);
 /* need to figure out eof */
 if(*nbytes <= 0)
 {
 result = GlobusXIOUdtError("UDT::recv failed");
 goto error;
 }

 return GLOBUS_SUCCESS;
error:
 return result;
}

static
globus_result_t
globus_l_xio_udt_ref_write(
 void * driver_specific_handle,
 const globus_xio_iovec_t * iovec,
 int iovec_count,
 globus_size_t * nbytes)
{
 globus_result_t result;
 xio_l_udt_ref_handle_t * handle;

 handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

 *nbytes = (globus_size_t) UDT::send(
 handle->sock, (char*)iovec[0].iov_base,
 iovec[0].iov_len, 0);
 if(*nbytes < 0)
 {
 result = GlobusXIOUdtError("UDT::send failed");
 goto error;
 }

 return GLOBUS_SUCCESS;
error:
 return result;
}

Throughput achieved using
various transport mechanisms

Impact of concurrent flows
Japan-ORNL testbed BMI-Japan testbed

26

Resource Utilization of
UDT vs TCP

  The performance of TCP and UDT
comparable on TeraGrid network
between ANL and ORNL
  Both TCP and UDT achieved a throughput

around 700 Mbit/s on this testbed.

  The CPU utilization for TCP transfers was
in the range of 30–50%, whereas for
UDT transfers it was around 80%

  The memory consumption was around
0.2% for TCP and 1% for UDT

27

Questions

